Когда появился первый компьютер в ссср
Перейти к содержимому

Когда появился первый компьютер в ссср

  • автор:

Советские персональные компьютеры

Мой первый компьютер был довольно мощным – процессор AMD Athlon 64X, 512 мегабайт оперативной памяти, видеокарта GeForce. И я никогда не прикасался к компьютерам времён СССР, и я был очень удивлён, когда узнал, сколько их было. В этом посте я собрал персональные компьютеры, разработанные и выпускавшиеся в странах социалистического блока в 1980-1990-х годах

У вас были компьютеры из представленных ниже? Пожалуйста, расскажите о своём опыте!

Просьба не быть слишком строгими к оформлению поста: часть изображений я не смог найти в лучшем качестве.
Если вам есть, чем дополнить коллекцию — пишите об этом, пожалуйста, в комментариях или в личных сообщениях.

image imageimage

Правец

Линейка компьютеров Правец выпускалась с 1980 по 1988 годы. Это, например, Правец 8 — клон Apple II.

image

Также в линейке Правец был клон IBM PC, производился на базе процессоров 8088 и 8086 от Intel.

image

Правец 8D был аналогом Oric Atmos и производился с 1985 по 1992 годы.

Микро-80

Одним из первых советских домашних компьютеров был Микро-80. Чтобы его собрать, нужно было использовать инструкцию из цикла статей в журнале «Радио» в 1982-1983 годах. Компьютер построен на базе микропроцессора КР580ВМ80, аналога i8080 от Intel. На фотографии — один из разработчиков компьютера Микро-80 Сергей Попов.

image

Диалоговый вычислительный комплекс

К 1990 году было выпущено 200 тысяч компьтеров ДВК всех моделей — а их было девять. Аббревиатура означает «Диалоговый вычислительный комплекс». Первая модель сошла с конвейера в 1982.

image

Агат разработали в 1981-1983 годах, начали выпускать в 1984 и только в 1993 году сняли с конвейера. Это был аналог Apple II, созданный специально для нужд образования. Вики подсказала, что Агат в образовании использовали аж до 2001 года. Компьютер производили на процессоре 6502 от MOS Technology. Кстати, в комплекте к Агатам шли два игровых пульта.

Агатов было несколько. Это первая модель — Агат-4

image

image\

image

Роботрон

Перенесёмся в Германскую Демократическую Республику. В 1984 тут начали производство компьютера Robotron 1715. Использовался 8-разрядный процессор U880, клон Zilog Z80. Звука у компьютера не было, порт для мыши также отсутствовал. Зато были два встроенных 5¼-дюймовых дисковода.

image

Специалист 1985

«Специалист» стал компьютером, породившим ряд клонов. На нём можно было программировать на Ассемблере, Форте, Паскале, Си, Бейсике. Компьютер разработали в 1985 году.

image

ПК Лик — клон компьютера Специалист. ЛИК означает «ЛИчный Компьютер». Цена в зависимости от комплектации составляла от 398 до 543 рублей.

image

IBM-совместимые компьютеры

Нейрон И9.66 разработали в Киеве, вероятно, в 1985 году, это предположительно первый IBM PC/XT-совместимый персональный компьютер. Производили его на базе процессора с тактовой частотой 4,77 МГц. Нейроны продавали даже в 1993 году.

image
В Смоленске выпускали «Ассистент-128». Это был IBM-совместимый компьютер. Его собирали на базе процессора-клона Intel 8086 — КР1810ВМ86. Я не смог найти год начала выпуска — подскажите в комментариях, пожалуйста, если в курсе.

image

16-разрядный компьютер ЕС-1841 1986 года. Компьютеры «Единая системы» в основном были клонами IBM PC, разработанными в Минске
image

16-разрядный персональный компьютер «Поиск» был частичным клон IBM PC/XT. В 1988 году выпустили первую партию.

image

Компьютер Искра 1030 начали выпускать в 1989 году в нескольких вариантах. ОЗУ 256 КБ можно было расширить до 1 МБ. В втором и третьем вариантах компьютера начали использовать жёсткие диски — по 10 мегабайт.

image

Электроника МС 1502 был ещё одним аналогом IBM PC XT.

image

Квазар-86 начали выпускать в 1992 году. Это 16-разрядный домашний аналог IBM PC/XT-совместимый ПК на базе процессора-клона Intel 8086.

image

БК означает Бытовой компьютер. Это семейство 16-раздяных компьютеров, совместимых по системе команд с СМ ЭВМ, PDP-11 и ДВК. Первые модели выпускали с 1985 года. В качестве устройств хранения данных была компакт кассета и дисковод. В модельный ряд входили БК-0010, БК-0010-01, БК-0011 и БК-0011М.

image

Бытовой компьютер БК0010-01 в 1989 году стоил 750 рублей.

image

Радио-86РК

Компьютер Радио 86РК 1986 года был предназначен для сборки радиолюбителями. Это легендарная разработка, за которой последовало множество клонов.

image

Печатная плата для сборки Радио 86РК.

image
Среди клонов Радио 86РК: Альфа БК, Микроша, Электроника КР-01/02/03/04, Партнер 01.01, Криста, Апогей БК-01, Спектр-001.

image

image

Компьютер Микроша производился на электромеханическом заводе с 1987 года. Печатали даже рекламные листки c информацией о нём.

image

image

image
Компьютер Криста был частично совместим с Радио-86РК. Работал на процессоре КР580ВМ80А. Его продавали с 1986 года по цене 510 рублей.

В комплекте с этим компьютером шла кассета с программным обеспечением: играми, Бейсик-интерпретатором, редактором текста, обучающими уроками по Бейсику и англо-русским словарём. Стоит отметить, что на Кристе можно было работать с помощью светового пера — его хорошо видно на фото.

image

Компьютер Апогей БК-01 разработан на базе Радио 86РК и выпускался с 1988 года. Для хранения данных в нём использовали компакт-кассету или дискету. Купить его можно было за 440 рублей. Он же, но с апгрейдом ОЗУ, стоил 560 рублей.

image

В следующей модели — Апогей БК-01Ц — появилась поддержка цвета.

image

image

Партнер 01.01, программно совместимый Радио 86РК, производили в Рязани с 1987 года. Его строили на базе процессора КР580ВМ80А, оснащали 64 КБ ОЗУ и 16 КБ ПЗУ. Работал компьютер в текстовом режиме с разрешением 25 строк по 64 символа и двумя цветами, которые позже увеличили до восьми.

К компьютеру можно было подключать различные модули, включая модуль цветной псевдографический и модуль контроллера дисковода.

В 1990 году это чудо техники стоило от 600 до 750 рублей.

image

Электроника КР-01/02/03/04 — серия компьютеров для самостоятельной сборки. Аббревиатура КР в названии обозначает «компьютер радиолюбителя». Конструктор изготавливали на трёх заводах. Стоимость — 395 рублей, он был одним из самых дешёвых клонов 86РК, производящихся промышленно.

image

image

image

Спектр-001 — клон Радио 86РК — выпускали с начала 1990-х годов. Был полностью совместим с оригиналом. Цена на 1990 год — 475 рублей.

image

Вектор 06Ц 1987 год

Вектор-06Ц разработали в Кишинёве в конце 1980-х. Из необычного — в нём был трехголосный синтезатор звука. Компьютер в 1987 году получил серебряную медаль на 33-й Всесоюзной радиовыставке на ВДНХ.

image

Впоследствии были произведены несколько модификаций компьютера: Вектор-06Ц.02, Вектор Старт-1200, Криста-2, ПК-6128Ц, а также частная разработка Вектор Турбо+.

Вектор Старт 1200.

image

ПК8000

Прототипом серии ПК 8000 были компьютеры стандарта MSX.
Первым компьютером серии была «Сура» — в 1987 году. Её спроектировали и производили в Пензе на заводе ВЭМ. Было несколько модификаций, возможность подключения дисковода, принтера, киртриджей с автозагрузкой и жёстких дисков.
image

«Веста» — одна из разновидностей ПК8000. Компьютер работал в двух текстовых и графическом режиме, процессор КР580ВМ80А 1,78 МГц. Источником однобитного звука был пьезоизлучатель. В комплекте шла инструкция, руководство по Бейсику и прикладным программам, а также адаптер ТВ-приёмника, кабели для подключения к кассетному магнитофону и телевизору. И, конечно, кассета МК60 с игровыми и прикладным программами на Бейсике, включая игры «УДАВ», «ТЕННИС», «АТАКА», «БАНКИР» и другие.

Дополнительно можно было купить печатающее устройство и звукогенератор.

image

Клоны ZX Spectrum

Компьютер Роби — аналог Хоббита, который, в свою очередь, разработан на архитектуре ZX Spectrum с сохранением программной совместимости с оригиналом. Разработан в СССР в конце 1980-х (возможно, в 1989 году).

image

В конце 1980-х в Бресте собирали ПЭВМ «Байт» (модификации «Байт» и «Байт-01») — 8-разрядный домашний компьютер, клон компьютера ZX Spectrum. В Белоруссии в декабре 1990-го года Байт стоил 960 советских рублей.

image

image

Компьютер «Byte» производства завода «Днестр»

image

Пентагон 1989 года — клон ZX Spectrum для самостоятельной сборки.

image

«Дельта-С» выпускался с 1989 года. Этот компьютер — близкий по структуре логики клон ZX Spectrum+.

image

Игровой компьютер «Символ» — ещё один клон многими любимого ZX Spectrum. Производили его с 1990 до 1995 года в Пензе.

image

В Минске делали на НПО им. Ленина c 1990 года производили клон ZX Spectrum 48K — Сантака-002 на базе оригинального процессора Zilog (Z840004PSC). Практически такая же машина, но с Secam кодером, производилась в Краснодаре под названием Импульс-М.

В качестве ПЗУ (16 КБ) использовались восемь микросхем КС573РФ2 или КР573РФ5 по 2 КБ.

image

image
«Учебно-игровая приставка» Ратон 9003 тоже была клоном ZX Spectrum. Его производили в Белоруссии на базе процессора Z80 с 1993 года.

В комплект входил кемпстон-джойстик и кассета с программным обеспечением.

image

Нафаню, клон ZX Spectrum 48К, можно было носить в чемоданчике с корпусом компьютера, блоком питания и джойстиком. Продавали его в 1990 по цене 650 рублей.

image

image

Другие компьютеры 1980-х

Знакомьтесь, это — Ириша. С помощью такого 8-разрядного компьютера собирались учить детей информатике в школах. В качестве монитора использовали телевизор — чёрно-белый или цветной. Компьютер построен на базе всё того же процессора КР580ВМ80А, который использовали при сборке Микро-80. Тактовая частота — 1,777 МГц.

Первые Ириши внедрялись в Молдавской ССР в 1985 году. В серийное производство этот компьютер не вышел.

image
8-разрядный учебно-бытовой микрокомпьютер Львов ПК-01 на клоне процессора i8088 с частотой 2,22 МГц выпускали с 1986 по 1991 годы. Стоил 750 рублей. Всего выпустили около 80 тысяч экземпляров.

image
Персональный компьютер Океан-240 выпускался Институтом океанологии АН СССР с 1986 года и был предназначен для использования в экспедициях. Оснащался ОЗУ 128 КБ. В качестве внешнего источника памяти — бытовой кассетный магнитофон.

Использовали его вместе с глубоководным зондом в качестве информационного вычислительного комплекса.

image

Пълдин 601 собирали в 1987 году в Болгарии на базе 8-разрядного процессора СМ601, аналога Motorola MC6800. У Пълдина 601 было целых четыре видеорежима 0..3 и SECAM-кодер. В следующих моделях добавили ввод с помощью светового пера и порт принтера.

image

Электроника МС 0511, или УКНЦ, предназначался для обучения. Впервые был представлен в 1987 году. Также на его основе строились системы управления технологическими процессами, телеграфные концентраторы, системы бухгалтерского учета, системы продажи билетов и так далее.

image

Корвет ПК8010 / ПК8020 выпускался серийно с 1988 года. Эти компьютеры можно было объединить в локальную сеть до 16 машин.

image

Микро-ЭВМ ЮТ-88 состоял из блока питания, блока центрального процессора, блока памяти небольшого объёма и блока интерфейса.

image

Это тоже ЮТ-88, но в минимальной конфигурации.

image
Башкирия-2М разработали в 1989. В нём было 128 КБ ОЗУ, в том числе 24 КБ видеопамяти — это позволяло хранить две страницы по 12 КБ. Подключался к обычному телевизору или монитору «Электроника МС 3201».

image

8-разрядный Орион-128 получил первую премию в 1989 году на Всесоюзной выставке радиолюбителей. Процессор КР580ВМ80А работал на частоте 2,5 МГц, ОЗУ 128 КБ можно было расширить до 256 КБ. Работал в графическом режиме, подключали его к телевизору.

image

В Минске с 1989 года выпускали компьютер Немига. Этот 16-разрядный ПК поставлялся в учебные заведения в составе вычислительных комплексов. Процессор компьютера был способен на 500 тысяч операций регистр-регистр в секунду, а видео-контроллер формиовал растровое изображение размером 512×312, видеопамять — 32 КБ. ОЗУ — 128 КБ. Также был контроллер локальной сети.

На фото — Немига ПК 588, настольный компьютер для преподавателя.

image

Другие компьютеры 1990-х

В 1990 году на базе того же любимого в СССР процессора КР580ВМ80А производили компьютер Искра 1080 Тарту. Он мог похвастать 64 Кб ОЗУ и 20 Кб ПЗУ, а также видео режимами с разрешением 384×256 (4 цвета) и 768×256 (2 цвета).

image

Aleste 520EX — настоящий омский компьютер, разработанный в 1992-1993 годах. Использовался процессор Zilog Z80 на 8 МГц. 512 КБ ОЗУ можно было расширить до 2 МБ, был 3,5 дюймовый дисковод. В прототипе было ещё и устройство тактильного ввода для монитора.

Среди расширений был процессор света, с помощью которого Алесту использовали в качестве системы управления светом в театре.

image

Пожалуйста, пишите о своём опыте в комментариях или оставляйте ссылки на свои публикации по теме.

Как СССР побеждал в компьютерной гонке, а потом её провалил

Советские компьютеры 1950‑х годов не уступали западным, но с конца 1960‑х они стали резко отставать от капиталистических ЭВМ.

Иллюстрация: Victor R. Ruiz / Hans Bln / Wikipedia / filistimlyanin / Freepik / Дима Руденок для Skillbox Media

Марина Демидова

Компьютерная эра во всём мире началась почти одновременно — сразу после Второй мировой войны. В 1948 году у США уже были первые ЭВМ Mark и ENIAC, поэтому советское правительство решило не отставать и организовало структуры, которые должны были заниматься разработкой аналогичной техники.

Одну из них, Институт точной механики и вычислительной техники (ИТМиВТ), долгое время возглавлял академик Сергей Алексеевич Лебедев. Сегодня его называют отцом советских ЭВМ.

МЭСМ — ЭВМ, работающая по принципу арифмометра

Первую ЭВМ в СССР и континентальной Европе создали в Киевском институте электротехники под руководством академика Лебедева.

Вообще, Лебедев хотел создать цифровую ЭВМ ещё в начале войны — тогда он руководил лабораторией в Московском электротехническом институте. Однако в 1941 году институт эвакуировали на Урал и учёному пришлось плотно заниматься военными разработками: самонаводящимися торпедами, системой стабилизации танковых орудий и тому подобным.

Когда война закончилась, Лебедев вернулся в Москву. Но реализовать проект счётной супермашины оказалось непросто. Он обратился в ЦК ВКП(б) и рассказал куратору по науке, что его ЭВМ будет выполнять до 10 000 операций в секунду, но над ним только посмеялись: «А что будет, когда мы все задачи на вашей машине прорешаем — выбросим её на свалку?»

К счастью, в 1947 году Лебедева пригласили в Киев, и он продолжил работу над вычислительной машиной. К осени 1948 года Сергей Алексеевич уже разработал модель вычислительной машины. Она работала по принципу арифмометра и предназначалась для ускорения и автоматизации счёта. Лебедев назвал свою машину МЭСМ (малая электронная счётная машина). А в марте 1949 года Лебедев создал и испытал работающий макет арифметико-логического устройства на радиолампах.

В 1951 году началась сложная работа по переводу макета в действующую ЭВМ. Это были послевоенные годы, людей не хватало, поэтому над машиной работали всего 12 инженеров, 15 техников и монтажниц. Трудиться приходилось сутки напролёт: Лебедев и сам всё время что-то паял, монтировал, клепал. И к декабрю 1951 года машина была готова!

МЭСМ использовала 6000 радиоламп и занимала 60 квадратных метров. Правда, с помещением под компьютер просчитались — машину собрали в комнате на нижнем этаже двухэтажного здания, и когда все 6000 ламп загорелись, температура резко подскочила. Работать стало невозможно, поэтому пришлось разобрать потолок и часть кровли.

  • Машина производила до 50 операций в секунду — неплохая скорость по сравнению с ручными вычислениями.
  • Ёмкость ОЗУ — 31 число и 63 команды.
  • Представление чисел — с фиксированной точкой, 16 двоичных разрядов.
  • Команды трёхадресные, длиной в 20 двоичных разрядов (4 разряда — код операций).
  • Дополнительно можно было подключать ЗУ на магнитном барабане ёмкостью 5000 слов.
  • Данные вводились с помощью перфоленты или штекеров на коммутаторах, а выводились на электромеханическое печатающее устройство или фотографировались.

Во время испытаний МЭСМ производила сложные вычисления — рассчитывала сумму факториалов нечётных чисел, возводила дроби в степень. Все увидели, что скорость компьютера намного превышает человеческие возможности.

В 1952 году ЭВМ продемонстрировали на публике — и с тех пор она считается первой работающей электронно-вычислительной машиной в СССР и континентальной Европе.

Лебедев разработал МЭСМ в качестве макета для отработки принципов построения БЭСМ (большой электронной счётной машины), которую создавали параллельно. Но и саму МЭСМ активно использовали — на ней решали разные научно-технические и экономические задачи:

  • рассчитывали энергосистемы и строительные конструкции;
  • обрабатывали геодезические наблюдения;
  • составляли статистические таблицы;
  • решали задачи баллистики, синтеза аммиака и многое другое.

МЭСМ использовали в реальных задачах до 1957 года, а потом ещё два года на ней обучали студентов.

Благодаря первой машине Лебедева в СССР начало развиваться программирование и производство вычислительной техники.

БЭСМ — быстрая, как снаряд

В том же 1952 году команда Лебедева построила БЭСМ-1.

  • В машине было 5000 электронных ламп.
  • Она могла выполнять 8000–10 000 операций в секунду.
  • Внешняя память — на магнитных барабанах (два барабана по 5120 слов) и магнитных лентах (четыре барабана по 30 000 слов). Машина имела общую память для команд и данных — всё по архитектуре фон Неймана.
  • Система представления чисел — двоичные с плавающей точкой.
  • Система команд — трёхадресная. В каждой команде содержатся код операции, два адреса исходных операндов и адрес результата операции.

В 1953 году на международной конференции в Дармштадте БЭСМ-1 признали самым быстродействующим компьютером в Европе. По скорости работы и объёму памяти она уступала только американской IBM 701.

В столице оценили работу Лебедева и назначили его директором московского Института точной механики и вычислительной техники (ИТМиВТ). БЭСМ перевезли в Москву и установили на первом этаже института. На ней решали научные и прикладные задачи, казавшиеся в то время неразрешимыми из-за большого объёма вычислений.

БЭСМ могла рассчитать траекторию полёта снаряда быстрее, чем снаряд долетал до цели. В то время это было огромным достижением. А ещё именно на БЭСМ-1 была рассчитана траектория полёта ракеты, доставившей на Луну вымпел СССР в 1959 году.

В 1960 году БЭСМ-1 разобрали, и по этому поводу сотрудники ИТМиВТ даже написали эпитафию.

Серийные компьютеры Лебедева

В 1957 году Ульяновский завод им. Володарского начал выпускать компьютеры БЭСМ-2. Ими оснастили все крупные вычислительные центры страны. На новых БЭСМ рассчитывали запуски искусственных спутников Земли и первых космических кораблей.

А в середине 1960-х разработали и запустили в производство БЭСМ-6 — супер-ЭВМ второго поколения на полупроводниковых транзисторах. Она могла выполнять уже около 1 млн операций в секунду.

В то время советская вычислительная техника шла вровень с западными разработками. Даже Норберт Винер говорил, что советские учёные опережают американских в области теории информации, а в части аппаратуры отстают совсем немного.

Лебедев, используя свои наработки при создании МЭСМ, разработал ещё 15 электронно-вычислительных машин. Но отечественным кибернетикам не дано было стать лидерами в компьютерной гонке. В 1966 году в СССР свернули разработку собственных вычислительных машин и начали копировать серию IBM 360 в качестве единого стандарта ЭВМ.

Академик Лебедев протестовал против этого решения — он рьяно доказывал, что клонирование устаревающих систем отбросит компьютерную индустрию на годы назад. Но учёного не послушали — у его оппонентов была власть.

В 1972 году решение о копировании американской IBM приняли окончательно. Эту весть Сергей Александрович принял очень тяжело. Здоровье немолодого уже академика постоянно ухудшалось, и через два года, после долгой болезни, Лебедев скончался.

Много ли выиграла советская компьютерная индустрия от этого решения? По мнению академика Малиновского, нанесённый ущерб был выше, чем полученные результаты. Клонирование IBM шло с трудом, документацию было сложно достать, не было подходящего оборудования и комплектующих. Сроки изготовления постоянно срывались.

В 1970-х годах советская вычислительная техника уже серьёзно отставала от западной, особенно в гражданских областях. ЭВМ использовали в основном в военных разработках. Но руководство страны не рассматривало производство электронно-вычислительных машин как ключевую отрасль. Бытовало мнение, что нехватку компьютеров можно восполнить большим количеством людей с арифмометрами.

В итоге компьютерная революция 1980-х застала страну врасплох. А в 1990-х годах СССР перестал существовать и отставание отечественной компьютерной техники от западной уже мало кого интересовало.

Когда появился первый компьютер в ссср

Сделано в СССР. История развития отечественного компьютеростроения

В этом материале мы представим вам этапы развития компьютеростроения в СССР. Сегодня на политической карте мира нет такой страны. Союз из 15 республик просуществовал 70 лет и в начале 90-х развалился на отдельные государства. За это время в мировых кругах не раз звучало выражение «сделано в СССР». Так какое же компьютерное наследие оставили нам советские изобретатели?

Не так давно мы рассказали вам про архитектуру новейшего российского процессора «Эльбрус-4С», разработанного компанией МЦСТ. Была затронута и ее история развития. На сегодняшний день эта фирма — чуть ли не единственный оплот отечественного компьютеростроения. На наш взгляд, было бы неправильно не уделить немного внимания разработкам СССР. Да, советское компьютеростроение нельзя назвать передовым, однако инженеры, ученые и государство все же уделяли ему достаточное количество времени и сил.

МЭСМ

Первая советская электронно-вычислительная машина была сконструирована и введена в эксплуатацию недалеко от города Киева. С появлением первого компьютера в Союзе и на территории континентальной Европы связывают имя Сергея Лебедева (1902-1974 гг.). В 1997 году ученая мировая общественность признала его пионером вычислительной техники, и в том же году Международное компьютерное общество выпустило медаль с надписью: «С.А. Лебедев — разработчик и конструктор первого компьютера в Советском Союзе. Основоположник советского компьютеростроения». Всего при непосредственном участии академика было создано 18 электронно-вычислительных машин, 15 из которых переросли в серийное производство.

В 1944-м, после назначения на должность директора Института энергетики АН УССР, академик с семьей переезжает в Киев. До создания революционной разработки остается еще долгих четыре года. Данный институт специализировался по двум направлениям: электротехническое и теплотехническое. Волевым решением директор разделяет два не совсем совместимых научных направления и возглавляет Институт электроники. Лаборатория института переезжает в предместье Киева (Феофания, бывший монастырь). Именно там и воплощается в жизнь давнишняя мечта профессора Лебедева — создать электронно-цифровую счетную машину.

В 1948 году модель первого отечественного компьютера была собрана. Устройство занимало почти все пространство комнаты площадью в 60 м2. В конструкции было так много элементов (особенно нагревательных), что при первом запуске машины выделилось столько тепла, что пришлось даже разобрать часть кровли. Первую модель советского компьютера назвали просто — Малая Электронная Счетная Машина (МЭСМ). Она могла производить до трех тысяч счетно-вычислительных операций в минуту, что по меркам того времени было заоблачно много. В МЭСМ был применен принцип электронной ламповой системы, который уже апробирован западными коллегами («Колосс Марк 1» 1943 г., «ЭНИАК» 1946 г.).

Всего в МЭСМ было использовано порядка 6 тысяч различных электронных ламп, устройству требовалась мощность в 25 кВт. Программирование происходило за счет ввода данных с перфолент или в результате набора кодов на штекерном коммутаторе. Вывод данных производился посредством электромеханического печатающего устройства или путем фотографирования.

Параметры МЭСМ:

  • двоичная с фиксированной запятой перед старшим разрядом система счета;
  • 17 разрядов (16 плюс один на знак);
  • емкость ОЗУ: 31 для чисел и 63 для команд;
  • емкость функционального устройства: аналогичная ОЗУ;
  • трехадресная система команд;
  • производимые вычисления: четыре простейших операции (сложение, вычитание, деление, умножение), сравнение с учетом знака, сдвиг, сравнение по абсолютной величине, сложение команд, передача управления, передача чисел с магнитного барабана и пр.;
  • вид ПЗУ: триггерные ячейки с вариантом использования магнитного барабана;
  • система ввода данных: последовательная с контролем через систему программирования;
  • моноблочное универсальное арифметическое устройство параллельного действия на триггерных ячейках.

Несмотря на максимально возможную автономную работу МЭСМ, определение и устранение неполадок все же происходило вручную или посредством полуавтоматического регулирования. Во время испытаний компьютеру было предложено решить несколько задач, после чего разработчики заключили, что машина способна производить вычисления, неподвластные человеческому разуму. Публичная демонстрация возможностей малой электронной счетной машины произошла в 1951 году. С этого момента устройство считается введенным в эксплуатацию первым советским электронно-вычислительным аппаратом. Над созданием МЭСМ под руководством Лебедева работало всего 12 инженеров, 15 техников и монтажниц.

Несмотря на ряд существенных ограничений, первый компьютер, сделанный в СССР, работал в соответствии с требованиями своего времени. По этой причине машине академика Лебедева было доверено проводить расчеты по решению научно-технических и народно-хозяйственных задач. Опыт, накопленный в процессе разработки машины, был использован при создании БЭСМ, а сама МЭСМ рассматривалась в качестве действующего макета, на котором отрабатывались принципы построения большой ЭВМ. Первый «блин» академика Лебедева на пути развития программирования и разработок широкого круга вопросов вычислительной математики не оказался комом. Машину применяли как для текущих задач, так и рассматривали прототипом более усовершенствованных аппаратов.

Успех Лебедева был высоко оценен в высших эшелонах власти, и в 1952 году академик получил назначение на руководящую должность института в Москве. Малая электронная счетная машина, произведенная в единичном экземпляре, использовалась до 1957 года, после чего устройство демонтировали, разобрали на составляющие и поместили в лабораториях Политехнического института в Киеве, где части МЭСМ служили студентам в лабораторных исследованиях.

ЭВМ серии «М»

Пока академик Лебедев работал над электронно-вычислительным устройством в Киеве, в Москве образовывалась отдельная группа электротехников. Сотрудники Энергетического института имени Кржижановского Исаака Брука (электротехник) и Башира Рамеева (изобретатель) в 1948 году подают в патентное бюро заявку на регистрацию проекта собственной ЭВМ. В начале 50-х Рамеев становится руководителем отдельной лаборатории, где и предназначалось появиться этому устройству. Буквально за один год разработчики собирают первый прототип машины М-1. По всем техническим параметрам это было устройство, намного уступающее МЭСМ: всего 20 операций в секунду, тогда как машина Лебедева показывала результат в 50 операций. Неотъемлемым преимуществом М-1 были ее габариты и энергопотребление. В конструкции использовано всего 730 электрических ламп, они требовали 8 кВт, а весь аппарат занимал лишь 5 м2.

В 1952-м году появилась М-2, производительность которой выросла в сто раз, а число ламп увеличилось лишь вдвое. Этого удалось достичь за счет использования управляющих полупроводниковых диодов. Но инновации требовали больше энергии (М-2 потребляла 29 кВт), да и площадь конструкция заняла в четыре раза больше, чем предшественница (22 м2). Счетных возможностей данного устройства вполне хватало для реализации ряда вычислительных операций, но серийное производство так и не началось.

Модель М-3 снова стала «малюткой»: 774 электронные лампы, потребляющие энергию в размере 10 кВт, площадь — 3 м2. Соответственно, уменьшились и вычислительные возможности: 30 операций в секунду. Но для решения многих прикладных задач этого вполне было достаточно, поэтому М-3 выпускалась небольшой партией, 16 штук.

В 1960 году разработчики довели производительность машины до 1000 операций в секунду. Данную технологию заимствовали далее для электронно-вычислительных машин «Арагац», «Раздан», «Минск» (произведены в Ереване и в Минске). Эти проекты, реализованные параллельно с ведущими московскими и киевскими программами, показали серьёзные результаты уже позже, в период перехода ЭВМ на транзисторы.

«Стрела»

Под руководством Юрия Базилевского в Москве создается ЭВМ «Стрела». Первый образец устройства был завершен в 1953 году. «Стрела» (как и М-1) содержала память на электронно-лучевых трубках (МЭСМ использовала триггерные ячейки). Проект данной модели компьютера был настолько удачным, что на Московском заводе счетно-аналитических машин началось серийное производство этого типа продукции. Всего за три года было собрано семь экземпляров устройства: для пользования в лабораториях МГУ, а также в вычислительных центрах Академии наук СССР и ряда министерств.

«Стрела» выполняла 2 тысячи операций в секунду. Но аппарат был весьма массивным и потреблял 150 кВт энергии. В конструкции использовалось 6,2 тысячи ламп и более 60 тысяч диодов. «Махина» занимала площадь в 300 м2.

БЭСМ

После перевода в Москву (в 1952 году), в Институт точной механики и вычислительной техники, академик Лебедев взялся за производство нового электронно-вычислительного устройства — Большой Электронной Счетной Машины, БЭСМ. Заметим, что принцип построения новой ЭВМ во многом был заимствован у ранней разработки Лебедева. Реализация данного проекта послужила началом самой успешной серии советских компьютеров.

БЭСМ осуществляла уже до 10 000 исчислений в секунду. При этом использовалось всего 5000 ламп, а потребляемая мощность составляла 35 кВт. БЭСМ являлась первой советской ЭВМ «широкого профиля» — её изначально предполагалось предоставлять учёным и инженерам для проведения расчетов различной сложности.

Модель БЭСМ-2 разрабатывалась для серийного производства. Число операций в секунду довели до 20 тысяч. После испытаний ЭЛТ и ртутных трубок, в данной модели оперативная память уже была на ферритовых сердечниках (основной тип ОЗУ на следующие 20 лет). Серийное производство, начавшееся на заводе имени Володарского в 1958 году, показало результаты в 67 единиц техники. БЭСМ-2 положила начало разработок военных компьютеров, руководивших системами ПВО: М-40 и М-50. В рамках этих модификаций был собран первый советский компьютер второго поколения — 5Э92б, и дальнейшая судьба серии БЭСМ уже оказалась связана с транзисторами.

Переход на транзисторы в советской кибернетике прошёл плавно. Особо уникальных разработок в этот период отечественного компьютеростроения не значится. В основном старые компьютерные системы переукомплектовывали под новые технологии.

Полностью полупроводниковая ЭВМ 5Э92б, спроектированная Лебедевым и Бурцевым, была создана под конкретные задачи противоракетной обороны. Она состояла из двух процессоров (вычислительного и контроллера периферийных устройств), имела систему самодиагностики и допускала «горячую» замену вычислительных транзисторных блоков. Производительность равнялась 500 тысячам операций в секунду для основного процессора и 37 тысяч – для контроллера. Столь высокая производительность дополнительного процессора была необходима, поскольку в связке с компьютерным блоком работали не только традиционные системы ввода-вывода, но и локаторы. ЭВМ занимала больше 100 м2.

Уже после 5Э92б разработчики снова возвратились к БЭСМ. Основная задача здесь — производство универсальных компьютеров на транзисторах. Так появились БЭСМ-3 (осталась в качестве макета) и БЭСМ-4. Последняя модель была выпущена в количестве 30 экземпляров. Вычислительная мощность БЭСМ-4 — 40 операций в секунду. Устройство в основном применялось как «лабораторный образец» для создания новых языков программирования, а также как прототип для конструирования более усовершенствованных моделей, таких как БЭСМ-6.

За всю историю советской кибернетики и вычислительной техники БЭСМ-6 считается самой прогрессивной. В 1965 году это компьютерное устройство было самым передовым по управляемости: развитая система самодиагностики, несколько режимов работы, обширные возможности по управлению удалёнными устройствами, возможность конвейерной обработки 14 процессорных команд, поддержка виртуальной памяти, кэш команд, чтение и запись данных. Показатели вычислительных способностей — до 1 млн операций в секунду. Выпуск данной модели продолжался вплоть до 1987 года, а использование — до 1995-го.

«Киев»

После того, как академик Лебедев отбыл в «Златоглавую», его лаборатория вместе с персоналом перешла под руководство академика Б.Г. Гнеденко (директор Института математики АН УССР). В этот период был взят курс на новые разработки. Так, зарождается идея создания компьютера на электронных лампах и с памятью на магнитных сердечниках. Он получил название «Киев». При его разработке впервые был применен принцип упрощенного программирования — адресный язык.

В 1956 году бывшую лебедевскую лабораторию, переименованную в Вычислительный центр, возглавил В.М. Глушков (сегодня данное отделение действует как Институт кибернетики имени академика Глушкова НАН Украины). Именно под началом Глушкова «Киев» удалось завершить и ввести в эксплуатацию. Машина остается на службе в Центре, второй образец компьютера «Киев» был приобретен и собран в Объединенном институте ядерных исследований (г. Дубна, Московская область).

Впервые в истории применения компьютерной техники, с помощью «Киева» удалось наладить дистанционное управление технологическим процессами металлургического комбината в Днепродзержинске. Заметим, что объект испытаний был удален от машины почти на 500 километров. «Киев» был вовлечен в ряд экспериментов по искусственному интеллекту, машинному распознаванию простых геометрических фигур, моделированию автоматов для распознавания печатных и письменных букв, автоматическому синтезу функциональных схем. Под руководством Глушкова на машине была апробирована одна из первых систем управления базами данных реляционного типа («Автодиректор»).

Хотя основу устройства составляли те же электронные лампы, у «Киева» уже было феррит-трансформаторное ЗУ с объемом в 512 слов. Также аппарат использовал блок внешней памяти на магнитных барабанах с общим объемом в девять тысяч слов. Вычислительная мощность этой модели компьютера в триста раз превышала возможности МЭСМ. Структура команд — аналогичная (трехадресная на 32 операции).

«Киев» имел собственные архитектурные особенности: в машине был реализован асинхронный принцип передачи управления между функциональными блоками; несколько блоков памяти (ферритовая оперативная память, внешняя память на магнитных барабанах); ввод и вывод чисел в десятичной системе счисления; пассивное запоминающее устройство с набором констант и подпрограмм элементарных функций; развитая система операций. Устройство производило групповые операции с модификацией адреса для повышения эффективности обработки сложных структур данных.

Советские ЭВМ, разработанные в 50-х

В 1955 году лаборатория Рамеева переехала в Пензу для разработки ещё одной ЭВМ под названием «Урал-1» — менее затратной, от того и массовой машины. Всего 1000 ламп с энергопотреблением в 10 кВт — это позволило существенно снизить производственные затраты. «Урал-1» выпускался до 1961-го года, всего было собрано 183 компьютера. Их устанавливали в вычислительных центрах и конструкторских бюро по всему миру. Например, в центре управления полётами космодрома «Байконур».

«Урал 2-4» также был на электронных лампах, но уже использовал оперативную память на ферритовых сердечниках, выполнял по несколько тысяч операций в секунду.

Московский государственный университет в это время проектирует собственный компьютер — «Сетунь». Он также пошел в массовое производство. Так, на Казанском заводе вычислительных машин было выпущено 46 таких компьютеров.

«Сетунь» — электронно-вычислительное устройство на троичной логике. В 1959 году эта ЭВМ со своими двумя десятками вакуумных ламп выполняла 4,5 тысячи операций в секунду и потребляла 2,5 кВт энергии. Для этого использовались феррито-диодные ячейки, которые советский инженер-электротехник Лев Гутенмахер опробовал ещё в 1954 году при разработке своей безламповой электронной вычислительной машины ЛЭМ-1.

«Сетуни» благополучно функционировали в различных учреждениях СССР. При этом создание локальных и глобальных компьютерных сетей требовало максимальную совместимость устройств (т.е. двоичная логика). Будущее компьютеров стояло за транзисторами, тогда как лампы оставались пережитком прошлого (как когда-то механические реле).

«Днепр»

В свое время Глушкова называли новатором, он не раз выдвигал смелые теории в области математики, кибернетики и вычислительной техники. Многие из его инноваций были поддержаны и внедрены в жизнь еще при жизни академика. Но всецело оценить тот весомый вклад, который сделал ученый в развитие этих направлений, помогло время. С именем В.М. Глушкова отечественная наука связывает исторические вехи перехода от кибернетики к информатике, а там — к информационным технологиям. Институт кибернетики АН УССР (до 1962 года — Вычислительный центр АН УССР), возглавляемый выдающимся ученым, специализировался на усовершенствовании компьютерной вычислительной техники, разработке прикладного и системного программного обеспечения, систем управления промышленным производством, а также сервисов обработки информации прочих сфер деятельности человека. В Институте были развернуты масштабные исследования по созданию информационных сетей, периферии и компонентов к ним. Можно с уверенностью заключить, что в те годы усилия ученых были направлены на «покорение» всех основных направлений развития информационных технологий. При этом любая научно обоснованная теория тут же воплощалась в жизнь и находила свое подтверждение на практике.

Следующий шаг в отечественном компьютеростроении связан с появлением электронно-вычислительного устройства «Днепр». Этот аппарат стал первым для всего Союза полупроводниковым управляющим компьютером общего назначения. Именно на базе «Днепра» появились попытки серийного производства компьютерно-вычислительной техники в СССР.

Эта машина была разработана и сконструирована всего за три года, что считалось очень незначительным временем для такого проектирования. В 1961 году произошло переоснащение многих советских промышленных предприятий, и управление производством легло на плечи ЭВМ. Глушков позже попытался объяснить, почему удалось так быстро собрать аппараты. Оказывается, еще на стадии разработок и проектирования ВЦ тесно сотрудничал с предприятиями, где предполагалось установить компьютеры. Анализировались особенности производства, этапность, а также выстраивались алгоритмы всего технологического процесса. Это позволило более точно запрограммировать машины, исходя из индивидуальных промышленных особенностей предприятия.

Было проведено несколько экспериментов с участием «Днепра» по удаленному управлению производствами разной специализации: сталелитейным, судостроительным, химическим. Заметим, что в этот же период западные конструкторы спроектировали аналогичный отечественному полупроводниковый компьютер универсального управления RW300. Благодаря проектированию и введению в эксплуатацию ЭВМ «Днепр» удалось не только сократить дистанцию в развитии компьютерной техники между нами и Западом, но и практически ступать «нога в ногу».

Компьютеру «Днепр» принадлежит еще одно достижение: устройство производилось и использовалось как основное производственно-вычислительное оборудование на протяжении десяти лет. Это (по меркам компьютерной техники) достаточно значительный срок, так как для большинства подобных разработок этап модернизации и усовершенствования исчислялся пятью-шестью годами. Эта модель компьютера была настолько надежной, что ей было доверено отслеживать экспериментальный космический полет шатлов «Союз-19» и «Аполлон», состоявшийся в 1972 году.

Впервые отечественное компьютеростроение вышло на экспорт. Также был разработан генеральный план строительства специализированного завода по производству вычислительной компьютерной техники — завод вычислительных и управляющих машин (ВУМ), расположенный в Киеве.

А в 1968 году небольшой серией была выпущена полупроводниковая ЭВМ «Днепр 2». Эти компьютеры имели более массовое назначение и использовались для выполнения различных вычислительных, производственных и планово-экономических задач. Но серийное производство «Днепр 2» было вскоре приостановлено.

«Днепр» отвечал следующим техническим характеристикам:

  • двухадресная система команд (88 команд);
  • двоичная система счисления;
  • 26 двоичных разрядов с фиксированной запятой;
  • оперативное запоминающее устройство на 512 слов (от одного до восьми блоков);
  • вычислительная мощность: 20 тысяч операций сложения (вычитания) в секунду, 4 тысячи операций умножения (деления) в тех же временных частотах;
  • размер аппарата: 35-40 м2;
  • энергопотребление: 4 кВт.

«Промінь» и ЭВМ серии «МИР»

1963 год становится переломным для отечественного компьютеростроения. В этот год на заводе по производству вычислительных машин в Северодонецке производится машина «Промінь» (с укр. — луч). В этом аппарате впервые были использованы блоки памяти на металлизированных картах, ступенчатое микропрограммное управление и ряд других инноваций. Основным назначением этой модели компьютера считалось произведение инженерных расчетов различной сложности.

За «Лучом» в серийное производство поступили компьютеры «Промінь-М» и «Промінь-2»:

  • двоично-десятичная система счисления;
  • объем ОЗУ: 140 слов;
  • ввод данных: с металлизированных перфокарт или штекерный ввод;
  • количество одномоментно запоминающихся команд: 100 (80 — основные и промежуточные, 20 — константы);
  • одноадресная система команд с 32 операциями;
  • вычислительная мощность – 1000 простейших задач в минуту, 100 вычислений по умножению в минуту.

Сразу за моделями серии «Промінь» появилось электронно-вычислительное устройство с микропрограммным выполнением простейших вычислительных функций — МИР (1965 г.). Заметим, что в 1967 году на мировой технической выставке в Лондоне машина МИР-1 получила достаточно высокую экспертную оценку. Американская компания IBM (ведущий мировой производитель-экспортер компьютерной техники в то время) даже приобрел несколько экземпляров.

МИР, МИР-1, а за ними вторая и третья модификации были поистине непревзойденным словом техники отечественного и мирового производства. МИР-2, например, успешно соревновалась с универсальными компьютерами обычной структуры, превосходящими ее по номинальному быстродействию и объему памяти во много раз. На этой машине впервые в практике отечественного компьютеростроения был реализован диалоговый режим работы, использующий дисплей со световым пером. Каждая из этих машин была шагом вперед на пути построения разумной машины.

С появлением этой серии устройств в работу был внедрен новый «машинный» язык программирования — «Аналитик». Алфавит для ввода состоял из заглавных русских и латинских букв, алгебраических знаков, знаков выделения целой и дробной части числа, цифры, показателей порядка числа, знаков препинания и так далее. При вводе информации в машину можно было пользоваться стандартными обозначениями элементарных функций. Русские слова, например, «заменить», «разрядность», «вычислить», «если», «то», «таблица» и другие использовались для описания вычислительного алгоритма и обозначения формы выходной информации. Любые десятичные значения можно было вводить в произвольной форме. Все необходимые параметры вывода программировались в период постановки задач. «Аналитик» позволял работать с целыми числами и массивами, редактировать введенные или уже запущенные программы, менять разрядность вычислений путем замены операций.

Символическая аббревиатура МИР была ни чем иным, как аббревиатура основного назначения устройства: «машина для инженерных расчетов». Эти устройства принято считать одними из первых персональных компьютеров.

Технические параметры МИР:

  • двоично-десятичная система счисления;
  • фиксированная и плавающая запятая;
  • произвольная разрядность и длина производимых расчетов (единственное ограничение накладывал объем памяти — 4096 символов);
  • вычислительная мощность: 1000-2000 операций в секунду.

Ввод данных осуществлялся за счет печатающего клавиатурного устройства (электрической машинки Zoemtron), идущего в комплекте. Соединение комплектующих происходило посредством микропрограммного принципа. В последствии благодаря этому принципу удалось усовершенствовать как сам язык программирования, так и прочие параметры устройства.

Следующее поколение компьютеров МИР также имело ряд преимуществ. Например, МИР-1 имел 120-разрядные микрокоманды, которые записывались на сменных микропрограммных матрицах. Это существенно повлияло на характер использования машины, а также на набор арифметических и логических операций, которые она выполняла. МИР-1 имел оперативную память на ферритовом сердечнике, внешнюю память обеспечивали 8-трековые перфоленты. Эти компьютеры нельзя было назвать супермощными, но их вычислительных ресурсов (200-300 операций в секунду) хватало для осуществления типичных инженерных расчетов. Потребляемая энергия не превышала показателя 1,5 кВт. Вес составлял 400 килограмм.

МИР-2 уже производил до 12 000 операций в секунду, а МИР-3 обладал возможностями, в 20 раз превышающими показатели предыдущей модели.

Супермашины серии «Эльбрус»

Выдающийся советский разработчик В.С. Бурцев (1927-2005 гг.) в истории отечественной кибернетики считается главным конструктором первых в СССР суперкомпьютеров и вычислительных комплексов для систем управления реального времени. Он разработал принцип селекции и оцифровки сигнала радиолокации. Это позволило произвести первую в мире автоматическую съемку данных с обзорной радиолокационной станции для наведения истребителей на воздушные цели. Успешно проведенные эксперименты по одновременному сопровождению нескольких целей легли в основу создания систем автонаведения на цель. Такие схемы строились на базе вычислительных устройств «Диана-1» и «Диана-2», разработанных под руководством Бурцева.

Далее группа ученых разработала принципы построения вычислительных средств противоракетной обороны (ПРО), что привело к появлению радиолокационных станций точного наведения. Это был отдельный высокоэффективный вычислительный комплекс, позволяющий с максимальной точностью производить автоматическое управление за сложными, разнесенными на большие расстояния объектами в режиме онлайн.

В 1972 году для нужд ввозимых комплексов противовоздушной обороны были созданы первые вычислительные трехпроцессорные машины 5Э261 и 5Э265, построенные по модульному принципу. Каждый модуль (процессор, память, устройство управления внешними связями) был полностью охвачен аппаратным контролем. Это позволило осуществлять автоматическое резервное копирование данных в случае, если происходили сбои или отказ в работе отдельных комплектующих. Вычислительный процесс при этом не прерывался. Производительность данного устройства была для тех времен рекордной — 1 млн операций в секунду при очень малых размерах (менее 2 м3). Эти комплексы в системе С-300 по сей день используются на боевом дежурстве.

В 1969 году была поставлена задача разработать вычислительную систему с производительностью 100 млн операций в секунду. Так появляется проект многопроцессорного вычислительного комплекса «Эльбрус».

Разработка машин «запредельных» возможностей имела характерные отличия наряду с разработками универсальных электронно-вычислительных систем. Здесь предъявлялись максимальные требования как к архитектуре и элементной базе, так и к конструкции вычислительной системы.

В работе над «Эльбрусом» и рядом предшествующих им разработок ставились вопросы эффективной реализации отказоустойчивости и непрерывного функционирования системы. Поэтому у них появились такие особенности, как многопроцессорность и связанные с ней средства распараллеливания ветвей задачи.

В 1970 году началось плановое строительство комплекса.

В целом «Эльбрус» считается полностью оригинальной советской разработкой. В него были заложены такие архитектурные и конструкторские решения, благодаря которым производительность МВК практически линейно возрастала при увеличении числа процессоров. В 1980 году «Эльбрус-1» с общей производительностью 15 млн операций в секунду успешно прошел государственные испытания.

МВК «Эльбрус-1» стал первой в Советском Союзе ЭВМ, построенной на базе ТТЛ-микросхем. В программном отношении ее главное отличие — ориентация на языки высокого уровня. Для данного типа комплексов были также созданы собственная операционная система, файловая система и система программирования «Эль-76».

«Эльбрус-1» обеспечивала быстродействие от 1,5 до 10 млн операций в секунду, а «Эльбрус-2» — более 100 млн операций в секунду. Вторая ревизия машины (1985 год) представляла собой симметричный многопроцессорный вычислительный комплекс из десяти суперскалярных процессоров на матричных БИС, которые выпускались в Зеленограде.

Серийное производство машин такой сложности потребовало срочного развертывания систем автоматизации проектирования компьютеров, и эта задача была успешно решена под руководством Г.Г. Рябова.

«Эльбрусы» вообще несли в себе ряд революционных новшеств: суперскалярность процессорной обработки, симметричная многопроцессорная архитектура с общей памятью, реализация защищенного программирования с аппаратными типами данных — все эти возможности появились в отечественных машинах раньше, чем на Западе. Созданием единой операционной системы для многопроцессорных комплексов руководил Б.А. Бабаян, в свое время отвечавший за разработку системного программного обеспечения БЭСМ-6.

Работа над последней машиной семейства, «Эльбрус-3» с быстродействием до 1 млрд. операций в секунду и 16 процессорами, была закончена в 1991 году. Но система оказалась слишком громоздкой (за счет элементной базы). Тем более, что на тот момент появились более экономически выгодные решения строительства рабочих компьютерных станций.

Вместо заключения

Советская промышленность была в полной мере компьютеризирована, но большое количество слабо совместимых между собой проектов и серий привело к некоторым проблемам. Основное «но» касалось аппаратной несовместимости, что мешало созданию универсальных систем программирования: у всех серий были разные разрядности процессоров, наборы команд и даже размеры байтов. Да и массовым серийное производство советских компьютеров вряд ли можно назвать (поставки происходили исключительно в вычислительные центры и на производство). В то же время отрыв американских инженеров увеличивался. Так, в 60-х годах в Калифорнии уже уверенно выделялась Силиконовая долина, где вовсю создавались прогрессивные интегральные микросхемы.

В 1968 году была принята государственная директива «Ряд», по которой дальнейшее развитие кибернетики СССР направлялось по пути клонирования компьютеров IBM S/360. Сергей Лебедев, остававшийся на тот момент ведущим инженером-электротехником страны, отзывался о «Ряде» скептически. По его мнению, путь копирования по определению являлся дорогой отстающих. Но другого способа быстро «подтянуть» отрасль никто не видел. Был учреждён Научно-исследовательский центр электронной вычислительной техники в Москве, основной задачей которого стало выполнение программы «Ряд» — разработки унифицированной серии ЭВМ, подобных S/360.

Результат работы центра — появление в 1971 году компьютеров серии ЕС. Несмотря на сходство идеи с IBM S/360, прямого доступа к этим компьютерам советские разработчики не имели, поэтому проектирование отечественных машин начиналось с дизассемблирования программного обеспечения и логического построения архитектуры на основании алгоритмов её работы.

История Советских ЭВМ. Часть 1 – Ранние ЭВМ

История Советских ЭВМ. Часть 1 – Ранние ЭВМ

Сегодня выражение ЭВМ «Электронная вычислительная машина» напрочь изжило себя. На замену ему пришло новое, более удобное слово с иноязычными корнями «компьютер». По данным некоторых исследований, по всему миру личным компьютером владеет практически 61% всего населения Земли. А ведь каких-то 50–60 лет назад никто и подумать не мог, что компьютеры смогут стать новой и невероятно огромной нишей в коммерции. Помимо этого, эргономика компьютеров каждое десятилетие менялась.

Раньше, в эпоху ранних, еще электронно–механических ЭВМ, которые по своим возможностям мало чем отличались от современного калькулятора занимали огромные, специально отведенные помещения. Вот например, самый первый представитель компьютеров (ЭВМ) ранней эпохи — «ENIAC», разработанный учеными из Пенсильванского университета по заказу Армии Соединенных Штатов. Потреблял он практически 150 киловатт энергии, а весил 30 тонн. На графике вы можете увидеть разницу в производительности между современными вычислительными станциями и «ENIAC»:

История Советских ЭВМ. Часть 1 – Ранние ЭВМ

График разницы производительности во флопсах

Впечатляет. Сегодня даже смартфон, который умещается у нас на ладони, в миллионы раз превосходит то, что было десятки лет назад. Но сегодня не об этом. В этой статье я хочу рассказать вам о заслугах наших отечественных инженеров, о вкладе, который они внесли в развитие всей компьютерной индустрии.

Первая ЭВМ в СССР

История Советских ЭВМ. Часть 1 – Ранние ЭВМ

МЭСМ

Началось все с появления «МЭСМ» (Малой Электронной Счётной Машины), ставшей точкой отсчета в развитии наших вычислительных технологий. Её проект был создан еще в 1948-м году ученым Сергеем Алексеевичем Лебедевым, который являлся одним из основоположников информационных технологий и вычислительной техники в СССР. А также Героем Социалистического труда и Лауреатом премии Ленина.

История Советских ЭВМ. Часть 1 – Ранние ЭВМ

С. А. Лебедев

Машина была сконструирована через два года, в 1950–м. А смонтирована в бывшем двухэтажном общежитии при женском монастыре в Феофании под Киевом. ЭВМ могла выполнять три тысячи операций в секунду, при этом потребляя 25 киловатт электроэнергии. Состояло это все чудо технологического прогресса из шести тысяч вакуумных ламп–проводников. Площадь отведенная под всю систему составляла 60 квадратных метров. Также одной из особенностей «МЭСМ» являлась поддержка трехадресной системы команд и возможность считывания данных не только с перфокарт, но и с магнитных ленточных носителей. Нахождение корня дифференциального уравнения стало первым вычислением, обработанным при помощи «МВЭМ». Спустя год (в 1951–м) инспекцией академии наук, «МЭСМ» Лебедева была утверждена и принята на постоянную эксплуатацию в военной и промышленной сфере.

«БЭСМ–1»

История Советских ЭВМ. Часть 1 – Ранние ЭВМ

Процесс работы на БЭСМ–1

В 1953 году, снова под крылом Сергея Лебедева была разработана Большая Электронная Счетная Машина первого поколения (БЭСМ–1). К сожалению, выпущена она была лишь в одном экземпляре. Вычислительные возможности «БЭСМ» стали аналогичны вычислительным машинам США того времени, а также «БЭСМ–1» стала самой продвинутой и производительной ЭВМ в Европе. На протяжении практически 6 лет машина неоднократно модернизировалась инженерами. Благодаря чему её производительность смогла достигнуть 10 тысяч операций в секунду. В 1958 году после очередной модернизации было принято решение переименовать «БЭСМ–1» в «БЭСМ–2» и пустить её в серийное производство. Всего было выпущено несколько десятков штук этой ЭВМ.

«Стрела»

История Советских ЭВМ. Часть 1 – Ранние ЭВМ

Ю. А. Базилевский

Но первой массовой Советской ЭВМ стала легендарная «Стрела», разрабатываемая примерно в тот же период начала 50–х под эгидой главного инженера Юрия Яковлевича Базилевского.

История Советских ЭВМ. Часть 1 – Ранние ЭВМ

ЭВМ «Стрела»

Вычислительная мощность «Стрелы» составляла 2 тыс. операций в секунду. Что немного уступало той же «МЭСМ» Лебедева, но тем не менее это не помешало Стреле стать самой лучшей в сфере промышленных ЭВМ. Всего на свет было выпущено 7 таких экземпляров.

История Советских ЭВМ. Часть 1 – Ранние ЭВМ

ЭВМ «М–1»

Уже точно ясно, что конец 40–х и начало 50–х были очень плодотворными относительно растущего энтузиазма внедрения компьютерных систем в производственные и военные ниши бывшего Советского Союза. Вот и в Москве сотрудниками Энергетического института Кржижановского разрабатывалась своя ЭВМ, а в 1948–м году даже был подан патент на её регистрацию.

История Советских ЭВМ. Часть 1 – Ранние ЭВМ

Слева — Башир Рамеев, справа — Исаак Брук

Ключевыми фигурами в этом проекте являлись Башир Рамеев и Исаак Брук. К 1951 г. ЭВМ («М–1») была сконструирована, но по своим возможностям она уступала той же МЭСМ Лебедева в стезе вычислительных мощностей. По сравнению с «МЭСМ», «М–1» ЭВМ могла выполнять лишь 20 операций в секунду, что в 150 раз меньше числа вычислений «МЭСМ». Но этот недостаток компенсировался относительной компактностью всей системы и её энергоэффективностью. Вместо 60 квадратных метров, требуемых для полного монтажа «МЭСМ», «М–1» требовалось около 10 квадратных метров, а потребление тока при работе составляло 29 киловатт. По мнению Исаака Брука, такие вычислительные машины должны быть ориентированы для малых предприятий не оперирующих большим капиталом.

Вскоре «М–1» была значительно усовершенствована. Новое имя, присвоенное второму поколению, было такое же краткое, закономерное, но при этом броское «М–2». Должен сказать, что отношение к названиям техники в Советском Союзе и России у меня особое. И кто бы что не говорил насчет их грубости и неказистости, в сравнении с американскими аналогами, наши мне нравятся больше, и лично я не представляю, чтобы эмблема условных Эльбрусов писалась или называлась иноязычно.

Но давайте вернемся к нашей ЭВМ. «М–2» стала самым лучшим «компьютером» в Советском Союзе по соотношению цены, качества и производительности. К слову, в первом компьютерном шахматном турнире, в котором соревновались множества стран, тем самым презентуя возможности и результаты своих разработок в ИТ–сфере, «М–2» одержала безоговорочную победу.

Из-за своей крайне успешности тройка лучших вычислительных машин — «БЭСМ», «Стрела» и «М–2» встали на службу для решения нужд военной обороны страны, науки и даже народного хозяйства.

Что значит «Ранние ЭВМ»?

История Советских ЭВМ. Часть 1 – Ранние ЭВМ

Все, о чем я рассказал выше, является вычислительной техникой первого поколения. Определяет эту классификацию то, что все они имели большие габариты, электронные лампы и элементные базы, а также высокое потреблении электроэнергии и, к сожалению, низкую надежность и ориентированность на узкую аудиторию (преимущественно физиков, инженеров и прочих научных деятелей). Магнитные барабаны и магнитные ленты использовались в качестве внешней памяти.

История Советских ЭВМ. Часть 1 – Ранние ЭВМ

«IBM 701»

Возможно кому-то могло показаться, что так было только у нас, но нет. Например, ознакомившись с разработками своих коллег из Штатов, академик Николай Николаевич Моисеев увидел те же исполинских размеров вычислительные автоматы, вокруг которых копошатся замудренные физики и математики, облаченные в белые халаты, рьяно пытающиеся устранить возникающие одну за другой неполадки. В 50–е года гордостью Америки был «IBM 701», который определенно удостоен отдельного рассказа, но это потом. Его вычислительная мощность составляла 15 тыс. операций в секунду. Чуть позже, Лебедевым была представлена следующая разработка ЭВМ «М–20».

История Советских ЭВМ. Часть 1 – Ранние ЭВМ

Работа за «М–20»

Число операций, которые могла обрабатывать «М–20» в секунду составляло 20 тыс., что на 5 тыс. больше, чем у западного конкурента. Также было введено некое подобие совмещения параллельных вычислений, благодаря увеличенному в два раза, в сравнении с «БЭСМ», объему оперативной памяти. Иронично, но всего было выпущено 20 единиц системы «М–20». Тем не менее, это не препятствовало тому, что «М–20» смогла зарекомендовать себя как самая производительная и многофункциональная ЭВМ, которая к тому же была самой надежной на фоне остальных. Возможность написания кода в мнемокодах — это лишь немногая часть того, что позволяла делать «М–20». Все научные вычисления, моделирования, проводимые в СССР в XX веке, преимущественно были выполнены именно на этой машине.

История Советских ЭВМ. Часть 1 – Ранние ЭВМ

ЭВМ «Урал»

Период производства и эксплуатации ранних ЭВМ в Советском Союзе продолжался еще практически 20-30 лет. В начале 60–х было начато производство ЭВМ «Урал». За все время было выпущено порядка 150 единиц техники. Основной областью применения «Урала» стали экономические расчеты.

Заключение

История Советских ЭВМ. Часть 1 – Ранние ЭВМ

На сегодня это все. Спасибо большое, что дочитали до конца. В следующих частях цикла мы рассмотрим историю ЕС ЭВМ (Единых систем электронных вычислительных машин), а также домашних компьютеров производимых некогда в Советском Союзе, и конечно же не забудем про современную технику Эльбрус.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *